Monday 7 November 2016

More SQL Queries

Sql Alias:
You can give a table or a column another name by using an alias. This can be a good thing to do if you have very long or complex table names or column names. An alias name could be anything, but usually it is short.

SQL Alias Syntax for Tables:

SELECT column_name(s)
FROM table_name
AS alias_name

SQL Alias Syntax for Columns:


SELECT column_name AS alias_name
FROM table_name

SELECT po.OrderID, p.LastName, p.FirstName
FROM Persons AS p,
Product_Orders AS po
WHERE p.LastName='Hansen' AND p.FirstName='Ola'
The same SELECT statement without aliases:
SELECT Product_Orders.OrderID, Persons.LastName, Persons.FirstName
FROM Persons,
Product_Orders
WHERE Persons.LastName='Hansen' AND Persons.FirstName='Ola'

Alter Table:
The ALTER TABLE statement is used to add, delete, or modify columns in an existing table.

SQL ALTER TABLE Syntax: To add a column in a table, use the following syntax:

ALTER TABLE table_name
ADD column_name datatype
To delete a column in a table, use the following syntax (notice that some database systems don't allow deleting a column):
ALTER TABLE table_name
DROP COLUMN column_name
To change the data type of a column in a table, use the following syntax:
ALTER TABLE table_name
ALTER COLUMN column_name datatype

SQL ALTER TABLE Example: Look at the "Persons" table: 

P_Id
LastName
FirstName
Address
City
1
Hansen
Ola
Timoteivn 10
Sandnes
2
Svendson
Tove
Borgvn 23
Sandnes
3
Pettersen
Kari
Storgt 20
Stavanger
Now we want to add a column named "DateOfBirth" in the "Persons" table.
We use the following SQL statement:


ALTER TABLE Persons
ADD DateOfBirth date

Change Data Type Example: Now we want to change the data type of the column named "DateOfBirth" in the "Persons" table. We use the following SQL statement: 

ALTER TABLE Persons
ALTER COLUMN DateOfBirth year
Between Operator:
The BETWEEN operator selects a range of data between two values. The values can be numbers, text, or dates.

SQL BETWEEN Syntax:

SELECT column_name(s)
FROM table_name
WHERE column_name
BETWEEN value1 AND value2
Now we want to select the persons with a last name alphabetically between "Hansen" and "Pettersen" from the table above. We use the following SELECT statement:


SELECT * FROM Persons
WHERE LastName
BETWEEN 'Hansen' AND 'Pettersen'

The result-set will look like this:


P_Id
LastName
FirstName
Address
City
1
Hansen
Ola
Timoteivn 10
Sandnes
Check constraint:
The CHECK constraint is used to limit the value range that can be placed in a column. If you define a CHECK constraint on a single column it allows only certain values for this column. If you define a CHECK constraint on a table it can limit the values in certain columns based on values in other columns in the row.

SQL CHECK Constraint on CREATE TABLE: The following SQL creates a CHECK constraint on the "P_Id" column when the "Persons" table is created. The CHECK constraint specifies that the column "P_Id" must only include integers greater than 0.

My SQL:
CREATE TABLE Persons
(
P_Id int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255),
CHECK (P_Id>0)
)
SQL Server / Oracle / MS Access:
CREATE TABLE Persons
(
P_Id int NOT NULL CHECK (P_Id>0),
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255)
)
To allow naming of a CHECK constraint, and for defining a CHECK constraint on multiple columns, use the following SQL syntax:
MySQL / SQL Server / Oracle / MS Access:
CREATE TABLE Persons
(
P_Id int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255),
CONSTRAINT chk_Person CHECK (P_Id>0 AND City='Sandnes')
)

SQL CHECK Constraint on ALTER TABLE: To create a CHECK constraint on the "P_Id" column when the table is already created, use the following SQL: 

MySQL / SQL Server / Oracle / MS Access:
ALTER TABLE Persons
ADD CHECK (P_Id>0)
To allow naming of a CHECK constraint, and for defining a CHECK constraint on multiple columns, use the following SQL syntax:
MySQL / SQL Server / Oracle / MS Access:
ALTER TABLE Persons
ADD CONSTRAINT chk_Person CHECK (P_Id>0 AND City='Sandnes')

To DROP a CHECK Constraint: To drop a CHECK constraint, use the following SQL:

SQL Server / Oracle / MS Access:
ALTER TABLE Persons
DROP CONSTRAINT chk_Person

Constraints:
Constraints are used to limit the type of data that can go into a table. Constraints can be specified when a table is created (with the CREATE TABLE statement) or after the table is created (with the ALTER TABLE statement). We will focus on the following constraints:
  • NOT NULL
  • UNIQUE
  • PRIMARY KEY
  • FOREIGN KEY
  • CHECK
  • DEFAULT
Create index Statement:
An index can be created in a table to find data more quickly and efficiently. The users cannot see the indexes, they are just used to speed up searches/queries.
Note: Updating a table with indexes takes more time than updating a table without (because the indexes also need an update). So you should only create indexes on columns (and tables) that will be frequently searched against.

SQL CREATE INDEX Syntax: Creates an index on a table. Duplicate values are allowed:

CREATE INDEX index_name
ON table_name (column_name)

SQL CREATE UNIQUE INDEX Syntax: Creates a unique index on a table. Duplicate values are not allowed:

CREATE UNIQUE INDEX index_name
ON table_name (column_name)
Note: The syntax for creating indexes varies amongst different databases. Therefore: Check the syntax for creating indexes in your database.

CREATE INDEX Example: The SQL statement below creates an index named "PIndex" on the "LastName" column in the "Persons" table:

CREATE INDEX PIndex
ON
Persons (LastName)
If you want to create an index on a combination of columns, you can list the column names within the parentheses, separated by commas:

CREATE INDEX PIndex
ON
Persons (LastName, FirstName)
Sql Datatypes:
Data types and ranges for Microsoft Access, MySQL and SQL Server.

Microsoft Access Data Types

Data type
Description
Storage
Text
Use for text or combinations of text and numbers. 255 characters maximum

Memo
Memo is used for larger amounts of text. Stores up to 65,536 characters. Note: You cannot sort a memo field. However, they are searchable

Byte
Allows whole numbers from 0 to 255
1 byte
Integer
Allows whole numbers between -32,768 and 32,767
2 bytes
Long
Allows whole numbers between -2,147,483,648 and 2,147,483,647
4 bytes
Single
Single precision floating-point. Will handle most decimals
4 bytes
Double
Double precision floating-point. Will handle most decimals
8 bytes
Currency
Use for currency. Holds up to 15 digits of whole dollars, plus 4 decimal places. Tip: You can choose which country's currency to use
8 bytes
AutoNumber
AutoNumber fields automatically give each record its own number, usually starting at 1
4 bytes
Date/Time
Use for dates and times
8 bytes
Yes/No
A logical field can be displayed as Yes/No, True/False, or On/Off. In code, use the constants True and False (equivalent to -1 and 0). Note: Null values are not allowed in Yes/No fields
1 bit
Ole Object
Can store pictures, audio, video, or other BLOBs (Binary Large OBjects)
up to 1GB
Hyperlink
Contain links to other files, including web pages

Lookup Wizard
Let you type a list of options, which can then be chosen from a drop-down list
4 bytes

MySQL Data Types: In MySQL there are three main types : text, number, and Date/Time types.

Text types:


Data type
Description
CHAR(size)
Holds a fixed length string (can contain letters, numbers, and special characters). The fixed size is specified in parenthesis. Can store up to 255 characters
VARCHAR(size)
Holds a variable length string (can contain letters, numbers, and special characters). The maximum size is specified in parenthesis. Can store up to 255 characters. Note: If you put a greater value than 255 it will be converted to a TEXT type
TINYTEXT
Holds a string with a maximum length of 255 characters
TEXT
Holds a string with a maximum length of 65,535 characters
BLOB
For BLOBs (Binary Large OBjects). Holds up to 65,535 bytes of data
MEDIUMTEXT
Holds a string with a maximum length of 16,777,215 characters
MEDIUMBLOB
For BLOBs (Binary Large OBjects). Holds up to 16,777,215 bytes of data
LONGTEXT
Holds a string with a maximum length of 4,294,967,295 characters
LONGBLOB
For BLOBs (Binary Large OBjects). Holds up to 4,294,967,295 bytes of data
ENUM(x,y,z,etc.)
Let you enter a list of possible values. You can list up to 65535 values in an ENUM list. If a value is inserted that is not in the list, a blank value will be inserted.
Note: The values are sorted in the order you enter them.
You enter the possible values in this format: ENUM('X','Y','Z')
SET
Similar to ENUM except that SET may contain up to 64 list items and can store more than one choice

Number types:


Data type
Description
TINYINT(size)
-128 to 127 normal. 0 to 255 UNSIGNED*. The maximum number of digits may be specified in parenthesis
SMALLINT(size)
-32768 to 32767 normal. 0 to 65535 UNSIGNED*. The maximum number of digits may be specified in parenthesis
MEDIUMINT(size)
-8388608 to 8388607 normal. 0 to 16777215 UNSIGNED*. The maximum number of digits may be specified in parenthesis
INT(size)
-2147483648 to 2147483647 normal. 0 to 4294967295 UNSIGNED*. The maximum number of digits may be specified in parenthesis
BIGINT(size)
-9223372036854775808 to 9223372036854775807 normal. 0 to 18446744073709551615 UNSIGNED*. The maximum number of digits may be specified in parenthesis
FLOAT(size,d)
A small number with a floating decimal point. The maximum number of digits may be specified in the size parameter. The maximum number of digits to the right of the decimal point is specified in the d parameter
DOUBLE(size,d)
A large number with a floating decimal point. The maximum number of digits may be specified in the size parameter. The maximum number of digits to the right of the decimal point is specified in the d parameter
DECIMAL(size,d)
A DOUBLE stored as a string , allowing for a fixed decimal point. The maximum number of digits may be specified in the size parameter. The maximum number of digits to the right of the decimal point is specified in the d parameter

*The integer types have an extra option called UNSIGNED. Normally, the integer goes from an negative to positive value. Adding the UNSIGNED attribute will move that range up so it starts at zero instead of a negative number.

Date types:


Data type
Description
DATE()
A date. Format: YYYY-MM-DD
Note: The supported range is from '1000-01-01' to '9999-12-31'
DATETIME()
*A date and time combination. Format: YYYY-MM-DD HH:MM:SS
Note: The supported range is from '1000-01-01 00:00:00' to '9999-12-31 23:59:59'
TIMESTAMP()
*A timestamp. TIMESTAMP values are stored as the number of seconds since the Unix epoch ('1970-01-01 00:00:00' UTC). Format: YYYY-MM-DD HH:MM:SS
Note: The supported range is from '1970-01-01 00:00:01' UTC to '2038-01-09 03:14:07' UTC
TIME()
A time. Format: HH:MM:SS
Note: The supported range is from '-838:59:59' to '838:59:59'
YEAR()
A year in two-digit or four-digit format.
Note: Values allowed in four-digit format: 1901 to 2155. Values allowed in two-digit format: 70 to 69, representing years from 1970 to 2069

*Even if DATETIME and TIMESTAMP return the same format, they work very differently. In an INSERT or UPDATE query, the TIMESTAMP automatically set itself to the current date and time. TIMESTAMP also accepts various formats, like YYYYMMDDHHMMSS, YYMMDDHHMMSS, YYYYMMDD, or YYMMDD.

SQL Server Data Types:

Character strings:


Data type
Description
Storage
char(n)
Fixed-length character string. Maximum 8,000 characters
n
varchar(n)
Variable-length character string. Maximum 8,000 characters

varchar(max)
Variable-length character string. Maximum 1,073,741,824 characters

text
Variable-length character string. Maximum 2GB of text data


Unicode strings:


Data type
Description
Storage
nchar(n)
Fixed-length Unicode data. Maximum 4,000 characters

nvarchar(n)
Variable-length Unicode data. Maximum 4,000 characters

nvarchar(max)
Variable-length Unicode data. Maximum 536,870,912 characters

ntext
Variable-length Unicode data. Maximum 2GB of text data


Binary types:


Data type
Description
Storage
bit
Allows 0, 1, or NULL

binary(n)
Fixed-length binary data. Maximum 8,000 bytes

varbinary(n)
Variable-length binary data. Maximum 8,000 bytes

varbinary(max)
Variable-length binary data. Maximum 2GB

image
Variable-length binary data. Maximum 2GB


Number types:


Data type
Description
Storage
tinyint
Allows whole numbers from 0 to 255
1 byte
smallint
Allows whole numbers between -32,768 and 32,767
2 bytes
int
Allows whole numbers between -2,147,483,648 and 2,147,483,647
4 bytes
bigint
Allows whole numbers between -9,223,372,036,854,775,808 and 9,223,372,036,854,775,807
8 bytes
decimal(p,s)
Fixed precision and scale numbers.
Allows numbers from -10^38 +1 to 10^38 –1.
The p parameter indicates the maximum total number of digits that can be stored (both to the left and to the right of the decimal point). p must be a value from 1 to 38. Default is 18.
The s parameter indicates the maximum number of digits stored to the right of the decimal point. s must be a value from 0 to p. Default value is 0
5-17 bytes
numeric(p,s)
Fixed precision and scale numbers.
Allows numbers from -10^38 +1 to 10^38 –1.
The p parameter indicates the maximum total number of digits that can be stored (both to the left and to the right of the decimal point). p must be a value from 1 to 38. Default is 18.
The s parameter indicates the maximum number of digits stored to the right of the decimal point. s must be a value from 0 to p. Default value is 0
5-17 bytes
smallmoney
Monetary data from -214,748.3648 to 214,748.3647
4 bytes
money
Monetary data from -922,337,203,685,477.5808 to 922,337,203,685,477.5807
8 bytes
float(n)
Floating precision number data from -1.79E + 308 to 1.79E + 308.
The n parameter indicates whether the field should hold 4 or 8 bytes. float(24) holds a 4-byte field and float(53) holds an 8-byte field. Default value of n is 53.
4 or 8 bytes
real
Floating precision number data from -3.40E + 38 to 3.40E + 38
4 bytes

Date types:


Data type
Description
Storage
datetime
From January 1, 1753 to December 31, 9999 with an accuracy of 3.33 milliseconds
8 bytes
datetime2
From January 1, 0001 to December 31, 9999 with an accuracy of 100 nanoseconds
6-8 bytes
smalldatetime
From January 1, 1900 to June 6, 2079 with an accuracy of 1 minute
4 bytes
date
Store a date only. From January 1, 0001 to December 31, 9999
3 bytes
time
Store a time only to an accuracy of 100 nanoseconds
3-5 bytes
datetimeoffset
The same as datetime2 with the addition of a time zone offset
8-10 bytes
timestamp
Stores a unique number that gets updated every time a row gets created or modified. The timestamp value is based upon an internal clock and does not correspond to real time. Each table may have only one timestamp variable


Other data types:


Data type
Description
sql_variant
Stores up to 8,000 bytes of data of various data types, except text, ntext, and timestamp
uniqueidentifier
Stores a globally unique identifier (GUID)
xml
Stores XML formatted data. Maximum 2GB
cursor
Stores a reference to a cursor used for database operations
table
Stores a result-set for later processing